Article-detailsAdvances in Industrial Engineering and Management
 Article-details | AIEM

2019(Volume 8)
Vol. 8, No. 1 (2019)
2018(Volume 7)
Vol. 7, No. 1 (2018)
Vol. 7, No. 2 (2018)
2017(Volume 6)
Vol. 6, No. 2 (2017)
Vol. 6, No. 1 (2017)
2016(Volume 5)
Vol. 5, No. 2 (2016)
Vol. 5, No. 1 (2016)
2015(Volume 4)
Vol. 4, No. 2 (2015)
Vol. 4, No. 1 (2015)
2014(Volume 3)
Vol.3, No.4 ( 2014 )
Vol.3, No.3 ( 2014 )
Vol.3, No.2 ( 2014 )
Vol.3, No.1 ( 2014 )
2013 ( Volume 2 )
Vol.2, No.2 ( 2013 )
Vol.2, No.1 ( 2013 )
2012 ( Volume 1 )
Vol. 1, No.1 ( 2012 )



ISSN:2222-7059 (Print);EISSN: 2222-7067 (Online)
Copyright © 2000- American Scientific Publishers. All Rights Reserved.

Title : Comparative Analysis of Absorption Coefficient for Parabolic and Gaussian Quantum Wells for Photodetector Application
Author(s) : Debasmita Sarkar, Arpan Deyasi
Author affiliation : RCC Institute of Information Technology, Kolkata, India 700015
Corresponding author img Corresponding author at : Corresponding author img  

The Absorption coefficient of double Gaussian and parabolic quantum wells are analytically computed as a function of wavelength for different structural parameters and material composition. Lorentzian lineshape function is considered for near accurate estimation, and intersubband transitions between lowest three quantum states are considered for calculation. The transition between ground and first quantum state is primarily considered for the analysis, and Kane-type first order band nonparabolicity is taken into account. Electric field is applied along the direction of quantum confinement. Result plays important role for design of the device for photodetector application.

Key words:Absorption coefficient; Parabolic geometry; Gaussian geometry; Lorentzian lineshape function; Structural parameters; Material composition; Photodetector

Cite it:
Debasmita Sarkar, Arpan Deyasi , Comparative Analysis of Absorption Coefficient for Parabolic and Gaussian Quantum Wells for Photodetector Application, Advances in Industrial Engineering and Management, vol. 5, no. 2, 2016, pp. 197-201, doi: 10.7508/aiem.2016.02.006

Full Text : PDF(size: 379.81 kB, 197-201, Download times:263)

DOI : 10.7508/aiem.2016.02.006

[1]C. Pigorsch, W. Wegscheider, W. Klix, R. Stenzel, 1997. 3D-Simulation of Novel Quantum Wire Transistor, Physica Status Solidi (b), vol. 204, pp. 346-349.
[2]D. Urban, M. Braun, J. König,2007. Theory of a Magnetically Controlled Quantum-Dot Spin Transistor”, Physical Review B, vol. 76, p. 125306. [3]F. Qian, S. Gradecak, Y. Li, C. Y. Wen, C. M. Lieber, 2005. Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes, Nano Letters, vol. 5, pp. 2287-2291.
[4]J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, R. C. Tiberio, 1995. Photonic-Wire Laser, Physical Review Letters, vol. 75, pp. 2678-2681.
[5]T. K. Parashar, R. K. Pal, 2011. Modeling of GaAs/Al0.2Ga0.8As Quantum Well Gas Detector for LWIR Region, MIT International Journal of Electronics and Communication Engineering. vol. 1, pp. 97-100.
[6]S. Far, P. Sterian, L. Fara, M. Iancu, A. Sterian, 2012. New Results in Optical Modeling of Quantum Well Solar Cells, International Journal of Photoenergy, p. 810801.
[7]D. H. Kim, J. H. You, J. H. Kim, K. H. Yoo, T. W. Kim, 2012. Electronic Structures and Carrier Distributions of T-Shaped AlxGa1-xAs/AlyGa1-yAs Quantum Wires fabricated by a Cleaved-Edge Overgrowth Method, Journal of Nanoscience and Nanotechnology vol. 12, pp. 5687-5690.
[8]S. Tsukamoto, Y. Nagamune, M. Nishioka, Y. Arakawa, 1992. Fabrication of GaAs Quantum Wires on Epitaxially grown V Grooves by Metal-Organic Chemical-Vapor Deposition, Journal of Applied Physics, vol. 71, pp. 533-535.
[9]M. Ogawa, T. Kunimasa, T. Ito, T. Miyoshi, 1998. Finite-Element Analysis of Quantum Wires with Arbitrary Cross Sections, Journal of Applied Physics vol. 84, pp. 3242-3249.
[10] A. Deyasi, S. Bhattacharyya, N. R. Das, 2013. Computation of Intersubband Transition Energy in Normal and Inverted Core-Shell Quantum Dots using Finite Difference Technique”, Super lattices & Microstructures, vol. 60, pp. 414-425.
[11] S. Gangopadhyay, B. R. Nag, 1997. Energy Levels in Finite Barrier Triangular and Arrowhead-shaped Quantum Wires, Journal of Applied Physics, vol. 81, pp. 7885-7889.
[12]Y. Li, O. Voskoboynikov, C. P. Lee, S. M. Sze, 2001. Electron Energy State Dependence on the Shape and Size of Semiconductor Quantum Dots, Journal of Applied Physics, vol. 90, pp. 6416-6420.
[13]L. Zhang, Z. Yu, W. Yao, Y. Liu, H. Feng, 2011. Optical Properties of GaN/AlN Quantum Dots under Intense Laser Field, Proceedings of SPIE, Optoelectronic Materials and Devices VI, vol. 830813.
[14]A. Deyasi, N. R. Das, 2014. Oscillator Strength and Absorption Cross-Section of Core-Shell Triangular Quantum Wire for Intersubband Transition, Springer Proceedings in Physics: Advances in Optical Science and Engineering, vol. 166, Chapter, no. 78, pp. 629-635.
[15]C. R. Muller, L. Worschech, A. Forchel, 2006. Memory Inhibition in Quantum-Wire Transistors controlled by Quantum Dots, Physica Status Solidi (C), vol. 3, pp. 3794-3797.
[16]R. Wei, N. Deng, M. Wang, S. Zhang, P. Chen, L. Liu, J. Zhang, 2006. Study of Self-Assembled Ge Quantum Dot Infrared Photodetectors, 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, pp. 330-333.
[17]A. G. U. Perera, 2006. Quantum Structures for Multiband Photon Detection, Opto-Electronics Review, vol. 14, pp. 103-112.
[18]M. C. Phillips, M. S. Taubman, B. E. Bernacki, 2010. Design and Performance of a Sensor System for Detection of Multiple Chemicals using an External Cavity Quantum Cascade Laser, Proceedings of SPIE, vol. 76080D.

Terms and Conditions   Privacy Policy  Copyright©2000- 2014 American Scientific Publishers. All Rights Reserved.