Article-detailsAdvances in Industrial Engineering and Management
 Article-details | AIEM

2017(Volume 6)
Vol. 6, No. 2 (2017)
Vol. 6, No. 1 (2017)
2016(Volume 5)
Vol. 5, No. 2 (2016)
Vol. 5, No. 1 (2016)
2015(Volume 4)
Vol. 4, No. 2 (2015)
Vol. 4, No. 1 (2015)
2014(Volume 3)
Vol.3, No.4 ( 2014 )
Vol.3, No.3 ( 2014 )
Vol.3, No.2 ( 2014 )
Vol.3, No.1 ( 2014 )
2013 ( Volume 2 )
Vol.2, No.2 ( 2013 )
Vol.2, No.1 ( 2013 )
2012 ( Volume 1 )
Vol. 1, No.1 ( 2012 )



ISSN:2222-7059 (Print);EISSN: 2222-7067 (Online)
Copyright © 2000- American Scientific Publishers. All Rights Reserved.

Title : Impedance Model of A Piezoelectric Sensor Derived from Experimental Responses
Author(s) : Paramita Banerjee, Ratna Ghosh, Bhaswati Goswami
Author affiliation : 1Department of Applied Electronics and Instrumentation Engineering, Gurunanak Institute of Technology, Kolkata 700114, India
2Department of Instrumentation and Electronics Engineering, Jadavpur University 2nd Campus, Kolkata 700098, India
Corresponding author img Corresponding author at : Corresponding author img  

The aim of the paper is to propose an electrical equivalent series model of a piezo based sensor, in terms of its impedance, considering the Thevenin equivalent looking back impedance from the sensor side. As the sensor consists of a piezo element attached with a metallic strip, the model should explain the contribution of the piezo as well as the substrate separately in the overall impedance response. The model for piezo element consists of three passive impedance blocks, connected in series whereas there are four blocks in the model of the sensor. The fourth block here is mainly to represent the additional characteristics appearing due to the addition of the substrate. The blocks have their own individual contributions in the overall impedance response, though they are not totally decoupled. The simulated responses of the piezo as well as the sensor, using this model has been validated against experimental impedance responses. The model proposed in this study can be used to simulate the impedance phase responses as well as the impedance magnitude responses of the piezo and the sensor.

Key words:The work done was partially supported by funds received from DST PURSE project, Jadavpur University. The authors also acknowledge the help received from Sri Atish Nandy, Power Engineering, Jadavpur University, Kolkata, India, for his assistance in developing the sensor. This work is part of the PhD work being done by the first author, which is supported by Gurunanak Institute of Technology, Panihati, Kolkata.

Cite it:

Full Text : PDF(size: 413.59 kB, 1-5, Download times:12)

DOI : 10.7508/aiem.2017.01.001

[1]P. Banerjee, B. Goswami, R. Ghosh, 2012. Modeling of a sensor used for RFA based dental implant stability measurement, Proceedings of International Conference ICIEV, Dhaka, Bangladesh, pp. 44-48.
[2]E. Sunil, A. Chakraborty, R. Ghosh, B. Goswami, 2007. Design of transducers for resonance frequency measurement to assess the dental implant stability in vitro, Proceedings of the 33rd annual Conference of the IEEE Industrial Electronics Society (IECON), Taipei, Taiwan, November, pp. 2158-2162.
[3]S. Sherrit, H. D. Wiederick, B. K. Mukherjee, M. Sayer, 1997. An accurate equivalent circuit for the unloaded piezoelectric vibrator in the thickness mode, J. Appl. Phys., vol. 30, pp. 2354-2363.
[4]M. J. Guan and W. H. Liao, 2009. On the equivalent circuit models of piezoelectric ceramics, J. Ferroelectrics 386, pp. 77-87.
[5]J. Kim, B. L. Grisso, J. K. Kim, D. S. Ha, D. J. Inman, 2008. Electrical modeling of piezoelectric ceramics for analysis and evaluation of sensory systems, SAS 2008, IEEE Sensors Applications Symposium, Atlanta, GA,pp. 122-127.
[6]S. O. R. Moheimani, 2003. A survey of recent innovations in vibration damping and control using shunted piezoelectric transducers, J. IEEE Trans. Control Syst. Technol, vol. 11- 4, pp. 482-494.
[7]S. Ghosal, P. Banerjee, B. Goswami, R. Ghosh, 2011. Determination of stability of dental implant from impedance studies using resonance frequency analysis, Proceedings of Second International Conference on Emerging Applications of Information Technology, (EAIT), Kolkata, India, pp. 71-74.
[8]D. Chowdhury, B. Goswami, R. Ghosh, 2014. Monitoring the change in resonance frequency of a dental implant in hardening dental plaster using microcontroller, Proceedings of Fourth International Conference of Emerging Applications of Information Technology, ( EAIT), Kolkata, India, pp. 89-92.
[9]M. Lukacs, T. Olding, M. Sayer, R. Tasker and S. Sherrit, 1999. Thickness mode material constants of a supported piezoelectric film, J. Appl. Phys., vol. 85(5), pp. 2835-2843.
[10]P. Banerjee, S. Dasgupta, R. Ghosh, B. Goswami, 2016. Electrical impedance model of piezoelectric based sensor, First International Conference on Control, Measurement and Instrumentation, Kolkata, India

Terms and Conditions   Privacy Policy  Copyright©2000- 2014 American Scientific Publishers. All Rights Reserved.