Article-detailsAdvances in Industrial Engineering and Management
 Article-details | AIEM

2017(Volume 6)
Vol. 6, No. 2 (2017)
Vol. 6, No. 1 (2017)
2016(Volume 5)
Vol. 5, No. 2 (2016)
Vol. 5, No. 1 (2016)
2015(Volume 4)
Vol. 4, No. 2 (2015)
Vol. 4, No. 1 (2015)
2014(Volume 3)
Vol.3, No.4 ( 2014 )
Vol.3, No.3 ( 2014 )
Vol.3, No.2 ( 2014 )
Vol.3, No.1 ( 2014 )
2013 ( Volume 2 )
Vol.2, No.2 ( 2013 )
Vol.2, No.1 ( 2013 )
2012 ( Volume 1 )
Vol. 1, No.1 ( 2012 )



ISSN:2222-7059 (Print);EISSN: 2222-7067 (Online)
Copyright © 2000- American Scientific Publishers. All Rights Reserved.

Title : Dependence of Peak Tunneling Current Density on Structural Parameters in Rectangular DQW Device
Author(s) : Shuvodseep Saha, Aparupa Chakrabarty, Arpan Deyasi
Author affiliation : RCC Institute of Information Technology, Kolkata, India 700015
Corresponding author img Corresponding author at : Corresponding author img  

Peak of tunneling current density of double quantum well device is analytically computed for different structural parameters, material composition and applied bias. Energy propagation is considered along the direction of applied bias, and travelling wave is measured w.r.t input wave at each grid point inside the structure. Rectangular well geometry is considered for ease of simulation. Effective mass mismatch at hetero-interfaces are taken into account by considering BenDaniel Duke boundary condition. High peak value at specific conditions will help to work the device for resonant tunneling application, precisely for the fabrication of RTD and RTT.

Key words:Tunnelling current density; peak current; structural parameters; double quantum well; applied bias

Cite it:
Shuvodseep Saha, Aparupa Chakrabarty, Arpan Deyasi, Dependence of Peak Tunneling Current Density on Structural Parameters in Rectangular DQW Device , Advances in Industrial Engineering and Management, vol. 6, no. 2, 2017, pp. 78-82, doi: 10.7508/aiem.2017.02.004

Full Text : PDF(size: 296.32 kB, 78-82, Download times:37)

DOI : 10.7508/aiem.2017.02.004

[1]R. Sugg, J. P. C. Leburton, 1991. Modelling of Modulation-Doped Multiple-Quantum-Well Structures in Applied Electric Fields using the Transfer-Matrix Technique, IEEE Journal of Quantum Electronics, vol. 27, pp. 224.
[2]L. A. Chanda, L. F. Eastman, 1982. Quantum Mechanical Reflection at Triangular Planar-Doped' Potential Barriers for Transistors”, Journal of Applied Physics, vol. 53, pp. 9165.
[3]E. P. Samuel, D. S. Patil, 2008. Analysis of Wavefunction Distribution in Quantum Well Biased Laser Diode using Transfer Matrix Method, Progress In Electromagnetics Research Letters, vol. 1, pp. 119-128.
[4]D. Joel, M. R. Singh, 2010. Resonant Tunnelling in Photonic Double Quantum Well Heterostructures, Nanoscale Research Letters, vol. 5, pp. 484-488.
[5]J. Jogi, N. Verma, M. Gupta, R. S. Gupta, 2011. Quantum Modelling of Electron Confinement in Double Triangular Quantum Well formed in Nanoscale Symmetric Double-Gate InAlAs/ InGaAs/ InP HEMT, International Semiconductor Device Research Symposium, pp. 1.
[6]S.Adachi, 1985. GaAs, AlAs and AlxGa1-xAs: Material Parameters for use in Research and Device Applications, Journal of Applied Physics, vol. 58, pp. R1-R29.
[7]S Zhong, X. Qu, 2012. Design and Fabricate InGaAlAs Quantum Well Device for Future Optoelectronic Integration, Advanced Materials Research, vol. 442, pp. 188-192.
[8]B. Liu, P. Han, Z. Xie, R. Zhang, C. Liu, X. Xiu, X. Hua, H. Lu, P. Chen, Y. Zheng, S. Zhou, 2010. Fabrication of Blue and Green Non-polar InGaN/GaN Multiple Quantum Well Light-emitting Diodes on LiAlO2(100) substrates, Physica Status Solidi(a), vol. 207, pp. 1404-1406.
[9]K. Hitoshi, 2011. Spin-photonic Semiconductor Devices based on (110) Quantum Wells: Spin-VCSELs and Spin-switches, 13th International Conference on Transparent Optical Networks, pp. 1-4.
[10]C. E. Simion, C. I. Ciucu, 2007. Triple–Barrier Resonant Tunneling: A Transfer Matrix Approach”, Romanian Reports in Physics, vol. 59, pp. 805-817.
[11]K. Ghatak, K. Thyagarajan, M. R. Shenoy, 1988. A Novel Numerical Technique for Solving the One-Dimensional Schrödinger Equation using Matrix Approach- Application to Quantum Well Structures, IEEE Journal of Quantum Electronics, vol. 24, pp. 1524-1531.
[12]G. Iannaccone, B. Pellegrini, 1996. Compact Formula for the Density of States in a Quantum Well, Physical Review B, vol. 53, pp. 2020-2025.
[13]R. Wessel, M. Alterelli, 1989. Quasi Stationary Energy Level Calculation for Thin Double Barrier GaAs-Ga1-xAlxAs Heterostructures, Physical Review B, vol. 39, pp. 10246-10250.
[14]Y. Song, 1996. A Transition Layer Model and its Application to Resonant Tunneling in Heterostructures, Physics Letters A, vol. 216, pp. 183-186.
[15]Al-Muhanna, A. Alharbi, A. Salhi, 2011. Waveguide Design Optimization for Long Wavelength Semiconductor Lasers with Low Threshold Current and Small Beam Divergence”, Journal of Modern Physics, vol. 2, pp. 225-230.
[16]C. L. Tsai, W. C. Wu, 2014. Effects of Asymmetric Quantum Wells on the Structural and Optical Properties of InGaN-Based Light-Emitting Diodes, Materials, vol. 7, pp. 3758-3771.

Terms and Conditions   Privacy Policy  Copyright©2000- 2014 American Scientific Publishers. All Rights Reserved.